
EE 508

Lecture 32

Transconductor Design



Transconductor Design

Transconductor-based filters depend directly on the gm of the transconductor

Feedback is not used to make the filter performance insensitive to the 

transconductance gain

Linearity and spectral performance of the filter strongly dependent upon the 

linearity of the transconductor

Often can not justify elegant linearization strategies in the transconductors 

because of speed, area, and power penalties
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Signal Swing and Linearity
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Linearity of Amplifiers
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Strongly dependent upon linearity of transconductance of differential pair
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How linear is the amplifier ?
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What input range is possible when using the tail 

current to program the  OTA ? 
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• Input signal swing decreases linearly with decreases in gm

• One decade reduction in gm results in one decade decrease in signal swing

• One decade reduction in gm requires two decade decrease in IT
• Very limited tail current programmability with basic MOS OTA
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Signal Swing and Linearity of Bipolar Differential Pair
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What input range is possible when using the tail 

current to program the  OTA ? 
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• Input signal swing not affected by IT
• Multi-decade adjustment of gm with IT without degrading signal swing
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Signal Swing and Linearity Summary

• Signal swing of MOSFET can be rather large if 
VEB is large but this limits gain

• Signal swing of MOSFET degrades significantly if 
VEB is changed for fixed W/L

• Bipolar swing is very small but independent of gm

• Multiple-decade adjustment of bipolar gm is 
practical

• Even though bipolar input swing is small, since 
gain is often very large, this small swing does 
usually not limit performance in feedback 
applications
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Does the MOS or BJT transconductor have larger 

input signal swing?  
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Depends upon how much adjustment range is desired
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Simple single-ended OTA 
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Squaring the last two equations we obtain 

Equating the difference to I0,  we obtain
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Simple single-ended OTA 

Note this behaves as a linear transconductor !

If size devices so that β5=β6 and VG=VG1, this simplifies to
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• Since both M2 and M3 are driven, this is a power-efficient

method for generating a given gm

• Behavior will degrade with bulk-dependent threshold 

voltages of n-channel devices

• Would like to generate VG and VG1 independent of VDD
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Bias Generators

Bias voltage generators are widely used to bias cascode devices and 

other transistors in an IC

Key goal is often to have bias voltages independent of VDD to avoid 

coupling supply noise into linear circuits



Potential Bias Generators
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Consider the following four circuits:

Inverse Widlar Inverse Widlar

Widlar Widlar



Potential Bias Generators
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• If go is neglected, it can be shown that all devices are operating in the 

saturation region, the output voltages are independent of VDD

• Note all have a positive feedback loop !

• Start up circuits not shown



Theorem:  If the small signal loop gain of the positive feedback 

loop is less than unity at an equilibrium point of the return map, 

then the equilibrium point is a stable equilibrium point and if the 

loop gain is larger than unity at an equilibrium point the 

equilibrium point is an unstable equilibrium point.

Regenerative Feedback Loops Can Provide Some Very 

Useful Properties but Can Also Offer Some Surprises !! 
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Consider the Inverse Widlar Bias Generator

Can be viewed as two common-source amplifiers in a loop

Same observation about the other 3 structures



VDD Independent Bias Generators 
Consider the two Inverse Widlar bias generators (start-up ckts not shown)

where
and M54 is the M5:M4 mirror gain

Assuming all devices in saturation, 
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Note:   Outputs VDD independent !



VDD Independent Bias Generators 
Consider the two Inverse Widlar bias generators (start-up ckts not shown)
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Must still check for stationarity of operating point, stability, and start-up
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Consider Inverse Widlar with Transistor M3 first 



VDD Independent Bias Generators 
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• Observe loop gain is always less than 1

• So it is a viable circuit for a bias generator



VDD Independent Bias Generators 
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• Circuit has 3 poles

• May use RH criteria

• If unstable, adjust one of the capacitors
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VDD Independent Bias Generators 
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Create Return Map

Must have single intersection point (desired point) with slope at unity 

gain crossing less than 1 over PVT variations

Add/modify startup circuit if necessary (usually necessary with this structure)



Consider Inverse Widlar with Transistor Resistor 
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VDD Independent Bias Generators 
Check for stationarity of operating point

• Observe loop gain is always larger  than 1

• So it not a viable circuit for a bias generator
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Basic Bias Generator Circuits
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Only two of these circuits are useful directly as bias generators!
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Transconductance Linearization Strategies
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Transconductance Linearization Strategies
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With a straightforward analysis, we obtain the expression

The first term on the right is the nonlinear term of the 

original source coupled pair and the second is linear in ID1

The larger the second term becomes, the more linear the 

transfer characteristics are



Transconductance Linearization Strategies
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The transconductance of this structure can be readily 

derived to obtain
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This can be expressed as



Transconductance Linearization Strategies
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Transconductance Linearization Strategies

There are a host of transconductance linearization strategies that have 

been discussed in the literature

Some are shown below

Many are strongly dependent upon a precise square-law model of the 

MOS devices and do not provide practical solutions when the devices are 

not square-law devices

Analysis or simulation with a more realistic model is necessary to validate 

linearity and practical applications of these structures



Transconductance Linearization Strategies

How good is the square-law model that we have been using for predicting 

filter performance? 

It is reasonably good when analyzing structures whose linearity characteristics 

are not strongly dependent upon the device model

The circuits considered to date are not particularly linear so the square-law 

model probably does a pretty good job of predicting their performance

More accurate models are usually  unwieldy for hand analysis 



Transconductance Linearization Strategies
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Transconductance Linearization Strategies



Linearity Enhancement with Source Degeneration

Transconductance Linearization Strategies



Linearization with active source degeneration

Transconductance Linearization Strategies





Linearity compensation with cross-coupled feedback



Single-ended input TAs



Differential input and output OTAs

Differential input OTAs
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Parasitic Capacitances and Floating Nodes
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There is invariably a parasitic capacitance 

associated with every terminal of every element 

in a filter

These parasitic capacitances can be significant 

in integrated filters

These can be combined into a single parasitic 

capacitance on each node
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Parasitic Capacitances and Floating Nodes

A floating node is a node that is not connected to either a zero-

impedance element or across a null-port

Floating nodes are generally avoided in integrated filters because the 

parasitic capacitances on the floating nodes usually degrades filter 

performance and often increases the order of the filter

Some filter architectures inherently have no floating nodes, 

specifically, most of the basic integrator-based filters have no floating 

nodes



Parasitic Capacitances and Floating Nodes
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Parasitic Capacitances and Floating Nodes
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No floating nodes !
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Signal Swing in OTA Circuits
The signal swing for the basic bipolar OTA is limited to a few mV for 

reasonably linear operation

This limited signal swing limits the use of the OTA

The following circuit (with maybe a 100:1 or more attenuation)  can be 

used to increase the input signal swing to the volt range and although it 

involves quite a few more components, the functionality can be most 

significant

Program range is not affected by adding the attenuators
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Programmable Filter Structures

It will be assumed that the transconductance gain can be programmed with 

either a dc current or a dc voltage
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Programmable First-Order Low-Pass Filter



Programmable Filter Structures
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Stay Safe and Stay Healthy !



End of Lecture 32


